2.2.1. Строение и морфофункциональная классификация нейронов

К оглавлению
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
221 

Структурной и функциональной единицей нервной системы яв­ляется нервная клетка — нейрон.

Нейроны — специализированные клетки, способные прини­мать, обрабатывать, кодировать, передавать и хранить информацию, организовывать реакции на раздражения, устанавливать контакты с другими нейронами, клетками органов. Уникальными особенно­стями нейрона являются способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний — синапсов.

Выполнению функций нейрона способствует синтез в его аксо-плазме веществ-передатчиков — нейромедиаторов (нейротрансмит-теры): ацетилхолина, катехоламинов и др.

Размеры нейронов колеблются от 6 до 120 мкм.

Число нейронов мозга человека приближается к 10й. На одном нейроне может быть до 10 000 синапсов. Если только эти элементы считать ячейками хранения информации, то можно прийти к выводу, что нервная система может хранить 1019 ед. информации, т. е. способна вместить практически все знания, накопленные человече­ством. Поэтому вполне обоснованным является представление, что человеческий мозг в течение жизни запоминает все происходящее в организме и при его общении со средой. Однако мозг не может извлекать из памяти всю информацию, которая в нем хранится.

Для различных структур мозга характерны определенные типы нейронной организации. Нейроны, организующие единую функцию, образуют так называемые группы, популяции, ансамбли, колонки, ядра. В коре большого мозга, мозжечке нейроны формируют слои клеток. Каждый слой имеет свою специфическую функцию.

Клеточные скопления образуют серое вещество мозга. Между ядрами, группами клеток и между отдельными клетками проходят миелинизированные или немиелинизированные волокна: аксоны и дендриты.

Одно нервное волокно из нижележащих структур мозга в коре разветвляется на нейроны, занимающие объем 0,1 мм3, т. е. одно нервное волокно может возбудить до 5000 нейронов. В постнатальном развитии происходят определенные изменения в плотности распо­ложения нейронов, их объема, ветвления дендритов.

Строение нейрона. Функционально в нейроне выделяют следу­ющие части: воспринимающую — дендриты, мембрана сомы нейрона; интегративную — сома с аксонным холмиком; передающую — аксонный холмик с аксоном.

Тело нейрона (с ом а), помимо информационной, выполняет трофическую функцию относительно своих отростков и их синапсов. Перерезка аксона или дендрита ведет к гибели отростков, лежащих дистальней перерезки, а следовательно, и синапсов этих отростков. Сома обеспечивает также рост дендритов и аксона.

Сома нейрона заключена в многослойную мембрану, обеспечи­вающую формирование и распространение электротонического по­тенциала к аксонному холмику.

Нейроны способны выполнять свою информационную функцию в основном благодаря тому, что их мембрана обладает особыми свойствами. Мембрана нейрона имеет толщину 6 нм и состоит из двух слоев липидных молекул, которые своими гидрофильными кон­цами обращены в сторону водной фазы: один слой молекул обращен внутрь, другой — кнаружи клетки. Гидрофобные концы повернуты друг к другу — внутрь мембраны. Белки мембраны встроены в двойной липидный слой и выполняют несколько функций: белки-"насосы" обеспечивают перемещение ионов и молекул против гра­диента концентрации в клетке; белки, встроенные в каналы, обес-

печивают избирательную проницаемость мембраны; рецепторные белки распознают нужные молекулы и фиксируют их на мембране; ферменты, располагаясь на мембране, облегчают протекание хими­ческих реакций на поверхности нейрона. В ряде случаев один и тот же белок может быть и рецептором, и ферментом, и «насосом».

Рибосомы располагаются, как правило, вблизи ядра и осущест­вляют синтез белка на матрицах тРНК. Рибосомы нейронов вступают в контакт с эндоплазматической сетью пластинчатого комплекса и образуют базофильное вещество.

Базофильное вещество (вещество Ниссля, тигроидное вещество, тигроид) — трубчатая структура, покрытая мелкими зернами, со­держит РНК и участвует в синтезе белковых компонентов клетки. Длительное возбуждение нейрона приводит к исчезновению в клетке базофильного вещества, а значит, и к прекращению синтеза спе­цифического белка. У новорожденных нейроны лобной доли коры большого мозга не имеют базофильного вещества. В то же время в структурах, обеспечивающих жизненно важные рефлексы — спин­ном мозге, стволе мозга, нейроны содержат большое количество базофильного вещества. Оно аксоплазматическим током из сомы клетки перемещается в аксон.

Пластинчатый комплекс (аппарат Гольджи) — органелла ней­рона, окружающая ядро в виде сети. Пластинчатый комплекс уча­ствует в синтезе нейросекреторных и других биологически активных соединений клетки.

Лизосомы и их ферменты обеспечивают в нейроне гидролиз ряда веществ.

Пигменты нейронов — меланин и липофусцин находятся в нейронах черного вещества среднего мозга, в ядрах блуждающего нерва, клетках симпатической системы.

Митохондрии — органеллы, обеспечивающие энергетические по­требности нейрона. Они играют важную роль в клеточном дыхании. Их больше всего у наиболее активных частей нейрона: аксонного холмика, в области синапсов. При активной деятельности нейрона количество митохондрий возрастает.

Нейротрубочки пронизывают сому нейрона и принимают участие в хранении и передаче информации.

Ядро нейрона окружено пористой двухслойной мембраной. Через поры происходит обмен между нуклеоплазмой и цитоплазмой. При активации нейрона ядро за счет выпячиваний увеличивает свою поверхность, что усиливает ядерно-плазматические отношения, сти­мулирующие функции нервной клетки. Ядро нейрона содержит гене­тический материал. Генетический аппарат обеспечивает дифферен-цировку, конечную форму клетки, а также типичные для данной клетки связи. Другой существенной функцией ядра является регуля­ция синтеза белка нейрона в течение всей его жизни.

Ядрышко содержит большое количество РНК, покрыто тонким слоем ДНК.

Существует определенная зависимость между развитием в онто­генезе ядрышка и базофильного вещества и формированием пер-

вичных поведенческих реакций у человека. Это обусловлено тем, что активность нейронов, установление контактов с другими ней­ронами зависят от накопления в них базофильного вещества.

Дендриты — основное воспринимающее поле нейрона. Мем­брана дендрита и синаптической части тела клетки способна реа­гировать на медиаторы, выделяемые аксонными окончаниями из­менением электрического потенциала.

Обычно нейрон имеет несколько ветвящихся дендритов. Необ­ходимость такого ветвления обусловлена тем, что нейрон как ин­формационная структура должен иметь большое количество входов. Информация к нему поступает от других нейронов через специа­лизированные контакты, так называемые шипики.

«Шипики» имеют сложную структуру и обеспечивают восприятие сигналов нейроном. Чем сложнее функция нервной системы, чем больше разных анализаторов посылают информацию к данной струк­туре, тем больше «шипиков» на дендритах нейронов. Максимальное количество их содержится на пирамидных нейронах двигательной зо­ны коры большого мозга и достигает нескольких тысяч. Они занимают до 43% поверхности мембраны сомы и дендритов. За счет «шипиков» воспринимающая поверхность нейрона значительно возрастает и мо­жет достигать, например у клеток Пуркинье, 250 000 мкм .

Напомним, что двигательные пирамидные нейроны получают информацию практически от всех сенсорных систем, ряда подкор­ковых образований, от ассоциативных систем мозга. Если данный «шипик» или группа «шипиков» длительное время перестает полу­чать информацию, то эти «шипики» исчезают.

Аксон представляет собой вырост цитоплазмы, приспособлен­ный для проведения информации, собранной дендритами, перера­ботанной в нейроне и переданной аксону через аксонный холмик — место выхода аксона из нейрона. Аксон данной клетки имеет постоянный диаметр, в большинстве случаев одет в миелиновую оболочку, образованную из глии. Аксон имеет разветвленные окон­чания. В окончаниях находятся митохондрии и секреторные об­разования.

Типы нейронов. Строение нейронов в значительной мере со­ответствует их функциональному назначению. По строению ней­роны делят на три типа: униполярные, биполярные и мультипо-лярные.

Истинно униполярные нейроны находятся только в мезэнцефалическом ядре тройничного нерва. Эти нейроны обеспе­чивают проприоцептивную чувствительность жевательных мышц.

Другие униполярные нейроны называют псевдоуниполяр­ными, на самом деле они имеют два отростка (один идет с пери­ферии от рецепторов, другой — в структуры центральной нервной системы). Оба отростка сливаются вблизи тела клетки в единый отросток. Все эти клетки располагаются в сенсорных узлах: спи-нальных, тройничном и т. д. Они обеспечивают восприятие болевой, температурной, тактильной, проприоцептивной, бароцептивной, вибрационной сигнализации.

Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Биполярные нейроны дендритом связаны с рецептором, аксоном — с нейроном следующего уровня организации соответствующей сенсорной системы.

Мультиполярные нейроны имеют несколько дендритов и один аксон. В настоящее время насчитывают до 60 различных вариантов строения мультиполярных нейронов, однако все они пред­ставляют разновидности веретенообразных, звездчатых, корзинча-тых и пирамидных клеток.

Обмен веществ в нейроне. Необходимые питательные вещества и соли доставляются в нервную клетку в виде водных растворов. Продукты метаболизма также удаляются из нейрона в виде водных растворов.

Белки нейронов служат для пластических и информационных целей. В ядре нейрона содержится ДНК, в цитоплазме преобладает РНК. РНК сосредоточена преимущественно в базофильном веществе. Интенсивность обмена белков в ядре выше, чем в цитоплазме. Скорость обновления белков в филогенетически более новых струк­турах нервной системы выше, чем в более старых. Наибольшая скорость обмена белков в сером веществе коры большого мозга. Меньше — в мозжечке, наименьшая — в спинном мозге.

Липиды нейронов служат энергетическим и пластическим мате­риалом. Присутствие в миелиновой оболочке липидов обусловливает их высокое электрическое сопротивление, достигающее у некоторых нейронов 1000 Ом/см2 поверхности. Обмен липидов в нервной клетке происходит медленно; возбуждение нейрона приводит к уменьшению количества липидов. Обычно после длительной умственной работы, при утомлении количество фосфолипидов в клетке уменьшается.

Углеводы нейронов являются основным источником энергии для них. Глюкоза, поступая в нервную клетку, превращается в гликоген, который при необходимости под влиянием ферментов самой клетки превращается вновь в глюкозу. Вследствие того что запасы гликогена при работе нейрона не обеспечивают полностью его энергетические траты, источником энергии для нервной клетки служит глюкоза крови.

Глюкоза расщепляется в нейроне аэробным и анаэробным путем. Расщепление идет преимущественно аэробным путем, этим объяс­няется высокая чувствительность нервных клеток к недостатку кис­лорода. Увеличение в крови адреналина, активная деятельность организма приводят к увеличению потребления углеводов. При нар­козе потребление углеводов снижается.

В нервной ткани содержатся соли калия, натрия, каль­ция, магния и др. Среди катионов преобладают К+, Na+, Mg +, Са2+; из анионов — СГ, НСОз. Кроме того, в нейроне имеются различные микроэлементы (например, медь и марганец). Благодаря высокой биологической активности они активируют ферменты. Ко­личество микроэлементов в нейроне зависит от его функционального состояния. Так, при рефлекторном или кофеиновом возбуждении содержание меди, марганца в нейроне резко снижается.

Обмен энергии в нейроне в состоянии покоя и возбуждения различен. Об этом свидетельствует значение дыхательного коэффи­циента в клетке. В состоянии покоя он равен 0,8, а при возбуж­дении — 1,0. При возбуждении потребление кислорода возрастает на 100%. После возбуждения количество нуклеиновых кислот в цитоплазме нейронов иногда уменьшается в 5 раз.

Собственные энергетические процессы нейрона (его сомы) тесно связаны с трофическими влияниями нейронов, что сказывается преж­де всего на аксонах и дендритах. В то же время нервные окончания аксонов оказывают трофические влияния на мышцу или клетки других органов. Так, нарушение иннервации мышцы приводит к ее атрофии, усилению распада белков, гибели мышечных волокон.

Классификация нейронов. Существует классификация нейронов, учитывающая химическую структуру выделяемых в оконча­ниях их аксонов веществ: холинергические, пептидергические, норад-реналинергические, дофаминергические, серотонинергические и др.

По чувствительности к действию раздражите­лей нейроны делят на моно-, би-, полисенсорные.

Моносенсорные нейроны. Располагаются чаще в первичных про­екционных зонах коры и реагируют только на сигналы своей сен-сорности. Например, значительная часть нейронов первичной зоны зрительной области коры большого мозга реагирует только на све­товое раздражение сетчатки глаза.

Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя. Так, отдельные нейроны слуховой зоны коры большого мозга могут ре­агировать на предъявления тона 1000 Гц и не реагировать на тоны другой частоты. Они называются мономодальными. Нейроны, реа­гирующие на два разных тона, называются бимодальными, на три и более — полимодальными.

Бисенсорные нейроны. Чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры большого мозга реагируют на зри­тельные и слуховые раздражения.

Полисенсорные нейроны. Это чаще всего нейроны ассоциативных зон мозга; они способны реагировать на раздражение слуховой, зрительной, кожной и других рецептивных систем.

Нервные клетки разных отделов нервной системы могут быть активными вне воздействия — фоновые, или фоновоактив-н ы е (рис. 2.16). Другие нейроны проявляют импульсную активность только в ответ на какое-либо раздражение.

Фоновоактивные нейроны делятся на тормозящиеся — урежаю-щие частоту разрядов и возбуждающиеся — учащающие частоту разрядов в ответ на какое-либо раздражение. Фоновоактивные ней­роны могут генерировать импульсы непрерывно с некоторым замед­лением или увеличением частоты разрядов — это первый тип ак­тивности — непрерывно-аритмичный. Такие нейроны обеспечивают тонус нервных центров. Фоновоактивные нейроны имеют большое

значение в поддержании уровня возбуждения коры и других структур мозга. Число фоновоактивных нейронов увеличивается в состоянии бодрствования.

Нейроны второго типа выдают группу импульсов с коротким меж­импульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка, импульсов. Этот тип активности называется пачечным. Значение пачечного типа активности заключа­ется в создании условий проведения сигналов при снижении функци­ональных возможностей проводящих или воспринимающих структур мозга. Межимпульсные интервалы в пачке равны приблизительно 1— 3 мс, между пачками этот интервал составляет 15—120 мс.

Третья форма фоновой активности — групповая. Групповой тип активности характеризуется апериодическим появлением в фоне группы импульсов (межимпульсные интервалы составляют от 3 до 30 мс), сменяющихся периодом молчания.

Функционально нейроны можно также разделить на три типа: афферентные, интернейроны (вставочные), эфферентные. Первые выполняют функцию получения и передачи информации в вышележащие структуры ЦНС, вторые — обеспечивают взаимодей­ствие между нейронами ЦНС, третьи — передают информацию в нижележащие структуры ЦНС, в нервные узлы, лежащие за пре­делами ЦНС, и в органы организма.

Функции афферентных нейронов тесно связаны с функциями рецепторов.