7.3.4. Движение лимфы

К оглавлению
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
221 

Скорость и объем лимфообразования определяются процессами микроциркуляции и взаимоотношением системной и лимфатической циркуляции. Так, при минутном объеме кровообращения, равном 6 л, через стенки кровеносных капилляров в организме человека фильтруется около 15 мл жидкости. Из этого количества 12 мл жидкости реабсорбируется. В интерстициальном пространстве оста­ется 3 мл жидкости, которая в дальнейшем возвращается в кровь по лимфатическим сосудам. Если учесть, что за час в крупные лимфатические сосуды поступает 150—180 мл лимфы, а за сутки через грудной лимфатический проток проходит до 4 л лимфы, которая в дальнейшем поступает в общий кровоток, то значение возврата лимфы в кровь становится весьма ощутимым.

Движение лимфы начинается с момента ее образования в лим­фатических капиллярах, поэтому факторы, которые увеличивают скорость фильтрации жидкости из кровеносных капилляров, будут также увеличивать скорость образования и движения лимфы. Фак­торами, повышающими лимфообразование, являются увеличение гидростатического давления в капиллярах, возрастание общей по­верхности функционирующих капилляров (при повышении функ­циональной активности органов), увеличение проницаемости капил­ляров, введение гипертонических растворов. Роль лимфообразования в механизме движения лимфы заключается в создании первона­чального гидростатического давления, необходимого для перемеще­ния лимфы из лимфатических капилляров и посткапилляров в отводящие лимфатические сосуды.

В лимфатических сосудах основной силой, обеспечивающей пе­ремещение лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфанги-онов. Лимфангионы, которые можно рассматривать как трубчатые лимфатические микросердца, имеют в своем составе все необходимые элементы для активного транспорта лимфы: развитую мышечную «манжетку» и клапаны. По мере поступления лимфы из капилляров в мелкие лимфатические сосуды происходит наполнение лимфан-гионов лимфой и растяжение их стенок, что приводит к возбуждению и сокращению гладких мышечных клеток мышечной «манжетки». Сокращение гладких мышц в стенке лимфангиона повышает внутри него давление до уровня, достаточного для закрытия дистального клапана и открытия проксимального. В результате происходит пе­ремещение лимфы в следующий центрипетальный лимфангион. За­полнение лимфой проксимального лимфангиона приводит к растя­жению его стенок, возбуждению и сокращению гладких мышц и

перекачиванию лимфы в следующий лимфангион. Таким образом, последовательные сокращения лимфангионов приводят к перемеще­нию порции лимфы по лимфатическим коллекторам до места их впадения в венозную систему. Работа лимфангионов напоминает деятельность сердца. Как в цикле сердца, в цикле лимфангиона имеются систола и диастола. По аналогии с гетерометрической саморегуляцией в сердце, сила сокращения гладких мышц лимфан­гиона определяется степенью их растяжения лимфой в диастолу. И наконец, как и в сердце, сокращение лимфангиона запускается и управляется одиночным платообразным потенциалом действия (рис. 7.24).

Стенка лимфангионов имеет развитую иннервацию, которая в основном представлена адренергическими волокнами. Роль нервных волокон в стенке лимфангиона заключается не в побуждении их к сокращению, а в модуляции параметров спонтанно возникающих ритмических сокращений. Кроме этого, при общем возбуждении симпатико-адреналовой системы могут происходить тонические со­кращения гладких мышц лимфангионов, что приводит к повышению давления во всей системе лимфатических сосудов и быстрому по­ступлению в кровоток значительного количества лимфы. Гладкие мышечные клетки высокочувствительны к некоторым гормонам и биологически активным веществам. В частности, гистамин, увели­чивающий проницаемость кровеносных капилляров и приводящий тем самым к росту лимфообразования, увеличивает частоту и ам­плитуду сокращений гладких мышц лимфангионов. Миоциты лимф­ангиона реагируют также на изменения концентрации метаболитов, рО2 и повышение температуры.

В организме, помимо основного механизма, транспорту лимфы по сосудам способствует ряд второстепенных факторов. Во время

вдоха усиливается отток лимфы из грудного протока в венозную систему, а при вдохе он уменьшается. Движения диафрагмы влияют на ток лимфы — периодическое (давление и растяжение диафрагмой цистерны грудного протока усиливает заполнение ее лимфой и способствует продвижению по грудному лимфатическому протоку. Повышение активности периодически сокращающихся мышечных органов (сердце, кишечник, скелетная мускулатура) влияет не толь­ко на усиление лимфооттока, но и способствует переходу тканевой жидкости в капилляры. Сокращения мышц, окружающих лимфа­тические сосуды, повышают внутрилимфатическое давление и вы­давливают лимфу в направлении, определяемом клапанами. При иммобилизации конечности отток лимфы ослабевает, а при активных и пассивных ее движениях — увеличивается. Ритмическое растя­жение и массаж скелетных мышц способствуют не только механи­ческому перемещению лимфы, но и усиливают собственную сокра­тительную активность лимфангионов в этих мышцах.