2.2.6. Неироглия

К оглавлению
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
221 

Нейроглия, или глия, — совокупность клеточных элементов нервной ткани, образованная специализированными клетками раз­личной формы. Она обнаружена Р. Вирховым и названа им нейрог-лией, что означает «нервный клей». Клетки нейроглии заполняют пространства между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3—4 раза меньше, чем нервные; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается.

Различают несколько видов нейроглии, каждая из которых об­разована клетками определенного типа: астроциты, олигодендроци-ты, микроглиоциты   (табл. 2.3).

Таблица 2.3. Количество глиальных элементов в структурах мозга, %

Виды  глиальных  клеток

Кора  большого мозга

Мозолистое  тело

Ствол   мозга

Астроциты

Олигодендроциты

Микроциты

61,5 29 9,5

54

40

6

30

62

8

Астроциты представляют собой многоотростчатые клетки с ядрами овальной формы и небольшим количеством хроматина. Раз­меры астроцитов 7—25 мкм. Астроциты располагаются главным образом в сером веществе мозга. Ядра астроцитов содержат ДНК, протоплазма имеет пластинчатый комплекс, центрисому, митохон­дрии. Считают, что астроциты служат опорой нейронов, обеспечи­вают репаративные процессы нервных стволов, изолируют нервное волокно, участвуют в метаболизме нейронов. Отростки астроцитов образуют «ножки», окутывающие капилляры, практически полно­стью покрывая их. В итоге между нейронами и капиллярами рас­полагаются только астроциты. Видимо, они обеспечивают транспорт веществ из крови в нейрон и обратно. Астроциты образуют мостики между капиллярами и эпендимой, выстилающей полости желудочков мозга. Считают, что таким образом обеспечивается обмен между кровью и цереброспинальной жидкостью желудочков мозга, т. е. астроциты выполняют транспортную функцию.

Олигодендроциты — клетки, имеющие малое количество отростков. Они меньше по размеру, чем астроциты. В коре большого мозга количество олигодендроцитов возрастает от верхних слоев к нижним. В подкорковых структурах, в стволе мозга олигодендро­цитов больше, чем в коре. Олигодендроциты участвуют в миели-низации аксонов (поэтому их больше в белом веществе мозга), в метаболизме нейронов, а также трофике нейронов.

Микроглия представлена самыми мелкими многоотростча-тыми клетками глии, относящимися к блуждающим клеткам. Ис-

точником микроглии служит мезодерма. Микроглиальные клетки способны к фагоцитозу.

Одной из особенностей глиальных клеток является их способность к изменению размеров. Это свойство было обнаружено в культуре ткани при помощи киносъемки. Изменение размера глиальных кле­ток носит ритмический характер: фаза сокращения составляет 90 с, расслабления — 240 с, т. е. это очень медленный процесс. Частота «пульсации» варьирует от 2 до 20 в час. «Пульсация» происходит в виде ритмического уменьшения объема клетки. Отростки клетки набухают, но не укорачиваются. «Пульсация» усиливается при элек­трической стимуляции глии; латентный период в этом случае весьма большой — около 4 мин.

Глиальная активность изменяется под влиянием различных би­ологически активных веществ: серотонин вызывает уменьшение «пульсации» олигодендроглиоцитов, норадреналин — усиление. Фи­зиологическая роль «пульсации» глиальных клеток мало изучена, но считают, что она проталкивает аксоплазму нейрона и влияет на ток жидкости в межклеточном пространстве.

Нормальные физиологические процессы в нервной системе во многом зависят от степени миелинизации волокон нервных клеток. В центральной нервной системе миелинизация обеспечивается оли-годендроцитами, а в периферической — леммоцитами (шванновские клетки).

Глиальные клетки не обладают импульсной активностью, по­добно нервным, однако мембрана глиальных клеток имеет заряд, формирующий мембранный потенциал, который отличается боль­шой инертностью. Изменения мембранного потенциала медленны, зависят от активности нервной системы, обусловлены не синап-тическими влияниями, а изменениями химического состава меж­клеточной среды. Мембранный потенциал нейроглии равен 70— 90 мВ.

Глиальные клетки способны к передаче возбуждения, распрост­ранение которого от одной клетки к другой идет с декрементом. При расстоянии между раздражающим и регистрирующим электро­дами 50 мкм распространение возбуждения достигает точки реги­страции за 30—60 мс. Распространению возбуждения между гли-альными клетками способствуют специальные щелевые контакты их мембран. Эти контакты обладают пониженным сопротивлением и создают условия для электротонического распространения тока от одной глиальной клетки к другой.

Вследствие того что нейроглия очень тесно контактирует с нейронами, процессы возбуждения нервных элементов сказываются на электрических явлениях глиальных элементов. Это влияние может быть обусловлено тем, что мембранный потенциал нейрог­лии зависит от концентрации ионов К+ в окружающей среде. Во время возбуждения нейрона и реполяризации его мембраны вход ионов К+ в нейрон усиливается, что значительно изменяет его концентрацию вокруг нейроглии и приводит к деполяризации ее клеточных мембран.