10.1.1. Обмен белков

К оглавлению
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 
153 154 155 156 157 158 159 160 161 162 163 

Белки занимают ведущее место среди органических элемен­тов, на их долю приходится более 50 % сухой массы клетки. Они выполняют ряд важнейших биологических функций.

Вся совокупность обмена веществ в организме (дыхание, пи­щеварение, выделение) обеспечивается деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков — акти­на и миозина.

Поступающий с пищей из внешней среды белок служит пласти­ческой и энергетической целям. Пластическое значение белка со­стоит в восполнении и новообразовании различных структурных компонентов клетки. Энергетическое значение заключается в обе­спечении организма энергией, образующейся при расщеплении белков.

В тканях постоянно протекают процессы распада белка с по­следующим выделением из организма неиспользованных продук­тов белкового обмена и наряду с этим — синтез белков. Таким образом, белки организма находятся в динамическом состоянии: из-за непрерывного процесса их разрушения и образования про­исходит обновление белков, скорость которого неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутрен­них органов и плазмы крови. Медленнее обновляются белки, вхо­дящие в состав клеток мозга, сердца, половых желез и еще мед­леннее — белки мышц, кожи и особенно опорных тканей (сухо­жилий, костей и хрящей).

Физиологическое значение аминокислотного состава пищевых белков и их биологическая ценность. Для нормального обмена белков, являющихся основой их синтеза, необходимо поступление с пищей в организм различных аминокислот. Изменяя количест­венное соотношение между поступающими в организм амино­кислотами или исключая из рациона ту или иную аминокислоту, можно по состоянию азотистого баланса, росту, массе тела и об­щему состоянию животных судить о значении для организма отдельных аминокислот. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме — заменимые аминокислоты, а 8 не синтезируются — незаменимые аминокислоты.

Без.незаменимых аминокислот синтез белка резко нарушается и наступает отрицательный баланс азота, останавливается рост, уменьшается масса тела. Для людей незаменимыми аминокисло­тами являются лейцин, изолейцин, валин, метионин, лизин, трео­нин, фенилаланин, триптофан.

Белки обладают различным аминокислотным составом, поэтому и возможность их использования для синтетических нужд ор­ганизма неодинакова. В связи с этим было введено понятие био­логической ценности белков пищи. Белки, содержащие весь необ-

ходимый набор аминокислот в таких соотношениях, которые обес­печивают нормальные процессы синтеза, являются белками биоло­гически полноценными. Наоборот, белки, не содержащие тех или иных аминокислот или содержащие их в очень малых количествах, являются неполноценными. Так, неполноценными белками явля­ются желатина, в которой имеются лишь следы цистина и отсут­ствуют триптофан и тирозин; зеин (белок, находящийся в кукуру­зе), содержащий мало триптофана и лизина; глиадин (белок пше­ницы) и гордеин (белок ячменя), содержащие мало лизина; и некоторые другие. Наиболее высока биологическая ценность бел­ков мяса, яиц, рыбы, икры, молока.

В связи с этим пища человека должна не просто содержать достаточное количество белка, но обязательно иметь в своем составе не менее 30% белков с высокой биологической ценностью, т. е. животного происхождения.

У людей встречается форма белковой недостаточности, раз­вивающаяся при однообразном питании продуктами раститель­ного происхождения с малым содержанием белка. При этом воз­никает заболевание, получившее название «квашиоркор». Оно встречается среди населения стран тропического и субтропиче­ского пояса Африки, Латинской Америки и Юго-Восточной Азии. Этим заболеванием страдают преимущественно дети в возрасте от 1 года до 5 лет.

Биологическая ценность одного и того же белка для разных людей различна. Вероятно, она не является какой-то определенной величиной, а может изменяться в зависимости от состояния ор­ганизма, предварительного пищевого режима, интенсивности и характера физиологической деятельности, возраста, индивидуаль­ных особенностей обмена веществ и других факторов.

Практически важно, чтобы два неполноценных белка, один из которых не содержит одних аминокислот, а другой — других, в сумме могли обеспечить потребности организма.

Азотистый баланс. Это соотношение количества азота, по­ступившего в организм с пищей и выделенного из него. Так как основным источником азота в организме является белок, то по азотистому балансу можно судить о соотношении количества по­ступившего и разрушенного в организме белка. Количество азота, поступившего с пищей, всегда больше количества усвоенного азота, так как часть его теряется с калом.

Усвоение азота вычисляют по разности содержания его в при­нятой пище и в кале. Зная количество усвоенного азота, легко вычислить общее количество усвоенного организмом белка, так как в белке содержится в среднем 16% азота, т. е. 1 г азота со­держится в 6,25 г белка. Следовательно, умножив найденное коли­чество азота на 6,25, можно определить количество усвоенного белка.

Для того чтобы установить количество разрушенного белка, необходимо знать общее количество азота, выведенного из орга­низма. Азотсодержащие продукты белкового обмена   (мочевина,

мочевая кислота, креатинин и др.) выделяются преимущественно с мочой и частично с потом. В условиях обычного, неинтен­сивного потоотделения количество азота в поте можно не при­нимать во внимание, поэтому для определения количества рас­павшегося в организме белка обычно находят количество азота в моче и умножают на 6,25.

Между количеством азота, введенного с белками пищи, и ко­личеством азота, выводимым из организма, существует определен­ная связь. Увеличение поступления белка в организм приводит к увеличению выделения азота из организма. У взрослого чело­века при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из орга­низма. Это состояние получило название азотистого равновесия. Если в условиях азотистого равновесия повысить количество белка в пище, то азотистое равновесие вскоре восстановится, но уже на новом, более высоком уровне. Таким образом, азотистое равно­весие может устанавливаться при значительных колебаниях со­держания белка в пище.

В случаях, когда поступление азота превышает его выделение, говорят о положительном азотистом балансе. При этом синтез белка преобладает над его распадом. Устойчивый положительный азотистый баланс наблюдается всегда при увеличении массы тела. Он отмечается в период роста организма, во время беременности, в периоде выздоровления после тяжелых заболеваний, а также при усиленных спортивных тренировках, сопровождающихся увеличе­нием массы мышц. В этих условиях происходит задержка азота в организме (ретенция азота).

Белки в организме не депонируются, т. е. не откладываются в запас, поэтому при поступлении с пищей значительного коли­чества белка только часть его расходуется на пластические цели, большая же часть — на энергетические цели.

Когда количество выведенного из организма азота превышает количество поступившего азота, говорят об отрицательном азоти­стом балансе. Отрицательный азотистый баланс отмечается при белковом голодании, а также в случаях, когда в организм не по­ступают отдельные необходимые для синтеза белков амино­кислоты.

Распад белка в организме протекает непрерывно. Степень распада белка обусловлена характером питания. Минимальные за­траты белка в условиях белкового голодания наблюдаются при питании углеводами. В этих условиях выделение азота может быть в 3—3,1/2 раза меньше, чем при полном голодании. Углеводы при этом выполняют сберегающую белки роль.

Распад белков в организме, происходящий при отсутствии бел­ков в пище и достаточном введении всех других питательных веществ (углеводы, жиры, минеральные соли, вода, витамины), отражает те минимальные траты, которые обусловлены основными процессами жизнедеятельности. Эти наименьшие потери белка для организма в состоянии покоя, пересчитанные на 1 кг массы тела.

были названы Рубнером коэффициентом изнашивания. Коэффи­циент изнашивания для взрослого человека равен 0,028—0,075 г азота на 1 кг массы тела в сутки.

Отрицательный азотистый баланс развивается при полном от­сутствии или недостаточном количестве белка в пище, а также при потреблении пищи, содержащей неполноценные белки. Не ис­ключена возможность дефицита белка при нормальном поступле­нии, но при значительном увеличении потребности в нем орга­низма.  Во всех этих случаях имеет место белковое голодание.

При белковом голодании даже в случаях достаточного поступ­ления в организм жиров, углеводов, минеральных солей, воды и витаминов происходит постепенно нарастающая потеря массы те­ла, зависящая от того, что затраты тканевых белков (минимальные в этих условиях и равные коэффициенту изнашивания) не компен­сируются поступлением белков с пищей, поэтому длительное бел­ковое голодание в конечном счете, так же как и полное голодание, неизбежно приводит к смерти. Особенно тяжело переносит белко­вое голодание растущий организм, у которого в этом случае про­исходит не только потеря массы тела, но и остановка роста, обус­ловленная недостатком пластического материала, необходимого для построения клеточных структур.

Регуляция обмена белков. Нейроэндокринная регуляция обме­на белков осуществляется рядом гормонов.

Соматотропный гормон гипофиза во время роста организма стимулирует увеличение массы всех органов и тканей. У взрослого человека он обеспечивает процесс синтеза белка за счет повыше­ния проницаемости клеточных мембран для аминокислот, усиле­ния синтеза РНК в ядре клетки и подавления синтеза катепси-нов — внутриклеточных протеолитических ферментов.

Существенное влияние на белковый обмен оказывают гормоны щитовидной железы — тироксин и трийодтиронин. Они могут в оп­ределенных концентрациях стимулировать синтез белка и благода­ря этому активизировать рост, развитие и дифференциацию тканей и органов.

Гормоны коры надпочечников — глюкокортикоиды (гидрокор­тизон, кортикостерон) усиливают распад белков в тканях, особен­но в мышечной и лимфоидной. В печени же глюкокортикоиды, наоборот, стимулируют.синтез белка.