12.2.3.1. Клубочковая фильтрация

К оглавлению
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 
153 154 155 156 157 158 159 160 161 162 163 

Мысль о фильтрации воды и растворенных веществ как пер­вом этапе мочеобразования была высказана в 1842 г. немецким физиологом К. Людвигом. В 20-х годах XX столетия американско­му физиологу А. Ричардсу в прямом эксперименте удалось под­твердить это предположение — с помощью микроманипулятора пунктировать микропипеткой клубочковую капсулу и извлечь из нее жидкость, действительно оказавшуюся ультрафильтратом плазмы крови.

Ультрафильтрация воды и низкомолекулярных компонентов из плазмы крови происходит через клубочковый фильтр. Этот филь­трационный барьер почти непроницаем для высокомолекулярных веществ. Процесс ультрафильтрации обусловлен разностью между гидростатическим давлением крови, гидростатическим давлением в капсуле клубочка и онкотическим давлением белков плазмы крови. Общая поверхность капилляров клубочка больше общей поверх­ности тела человека и достигает 1,5 м2 на 100 г массы почки. Фильтрующая мембрана (фильтрационный барьер), че­рез которую проходит жидкость из просвета капилляра в полость капсулы клубочка, состоит из трех слоев: эндотелиальных клеток капилляров, базальной мембраны и эпителиальных клеток висце­рального (внутреннего) листка капсулы — подоцитов (рис. 12.4).

Клетки эндотелия, кроме области ядра, очень истончены, тол­щина цитоплазмы боковых частей клетки менее 50 нм; в цитоплаз­ме имеются круглые или овальные отверстия (поры) размером 50—100 нм, которые занимают до 30 % поверхности клетки. При нормальном кровотоке наиболее крупные белковые молекулы обра­зуют барьерный слой на поверхности пор эндотелия и затрудняют движение через них альбуминов, ограничивая тем самым прохож­дение форменных элементов крови и белков через эндотелий. Дру­гие компоненты плазмы крови и вода могут свободно достигать базальной мембраны.

Базальная мембрана является одной из важнейших составных частей фильтрующей мембраны клубочка. У человека толщина ба­зальной мембраны 250—400 нм. Эта мембрана состоит из трех слоев — центрального и двух периферических. Поры в базальной

мембране препятствуют прохождению молекул диаметром больше 6 нм.

Наконец, важную роль в определении размера фильтруемых ве­ществ играют щелевые мембраны между «ножками» подоцитов. Эти эпителиальные клетки обращены в просвет капсулы почечного клубочка и имеют отростки — «ножки», которыми прикрепляются к базальной мембране. Базальная мембрана и щелевые мембраны между этими «ножками» ограничивают фильтрацию веществ, диаметр молекул которых больше 6,4 нм (т. е. не проходят веще­ства, радиус молекулы которых превышает 3,2 нм). Поэтому в просвет нефрона свободно проникает инулин (радиус молекулы 1,48 нм, молекулярная масса около 5200), может фильтроваться лишь 22 % яичного альбумина (радиус молекулы 2,85 нм, молеку­лярная масса 43 500), 3 % гемоглобина (радиус молекулы 3,25 нм, молекулярная масса 68 000 и меньше 1 % сывороточного альбумина (радиус молекулы 3,55 нм, молекулярная масса 69 000).

Прохождению белков через клубочковый фильтр препятствуют отрицательно заряженные молекулы — полианионы, входящие в состав вещества базальной мембраны, и сиалогликопротеиды в выстилке, лежащей на поверхности подоцитов и между их «нож­ками». Ограничение для фильтрации белков, имеющих отрицатель­ный заряд, обусловлено размером пор клубочкового фильтра и их электронегативностью. Таким образом, состав клубочкового фильтрата зависит от свойств эпителиального барьера и базальной мембраны. Естественно, размер и свойства пор фильтрационного барьера вариабельны, поэтому в обычных условиях в ультрафиль­трате обнаруживаются лишь следы белковых фракций, характер­ных для плазмы крови. Прохождение достаточно крупных молекул через поры зависит не только от их размера, но и конфигурации молекулы,  ее  пространственного  соответствия  форме  поры.

Уровень клубочковой фильтрации зависит от разности между гидростатическим давлением крови (около 44—47 мм рт. ст. в ка­пиллярах клубочка), онкотическим давлением белков плазмы крови (около 25 мм рт. ст.) и гидростатическим давлением в кап­суле клубочка (около 10 мм рт. ст.). Эффективное фильтрацион­ное давление, определяющее скорость клубочковой фильтрации, составляет 10—15 мм рт. ст. [47 мм рт. ст.— (25 мм рт. ст.+ + 10 мм рт. ст.) = 12 мм рт. ст.]. Фильтрация происходит только в том случае, если давление крови в капиллярах клубочков превы-

шает сумму онкотического давления белков в плазме и давления жидкости в капсуле клубочка.

Ультрафильтрат, извлеченный микропипеткой из полости клу­бочка, практически не содержит белков, но подобен плазме по общей концентрации осмотически активных веществ, глюкозы, мо­чевины, мочевой кислоты, креатинина и др. Небольшое различие концентрации ряда ионов по обеим сторонам клубочковой мембра­ны обусловлено равновесием Доннана — наличием в плазме крови анионов, не диффундирующих через мембрану и удерживающих часть катионов. Следовательно, для расчета количества фильтруе­мых веществ в клубочках необходимо учитывать, какая их часть может проходить из плазмы в просвет нефрона через гломеруляр-ный фильтр.

Для внесения поправки на связывание некоторых ионов белка­ми плазмы крови вводится понятие об улътрафилътруемой фрак­ции (f) — той части вещества от общей его концентрации в плазме крови, которая не связана с белком и свободно проходит через клубочковый фильтр. Ультрафильтруемая фракция для кальция составляет 0,6, для магния — 0,75. Эти величины свидетельствуют о том, что около 40 % кальция плазмы связано с белком и не фильтруется в клубочках. Однако в профильтровавшейся жидкости кальций (и магний) также состоит из двух фракций: одна из них — ионизированный кальций (магний), другая — кальций (магний), связанный с низкомолекулярными соединениями, прохо­дящими через клубочковый фильтр.

В ультрафильтрате обнаруживаются следы белка. Различие размера пор в клубочках даже у здорового человека обусловливает проникновение небольшого количества особенно измененных бел­ков; из нормальной мочи удалось выделить в следовых количествах белковые фракции, характерные для плазмы крови.

Измерение скорости клубочковой фильтрации. Для расчета объема жидкости, фильтруемой в 1 мин в почечных клубочках (скорость клубочковой фильтрации), и ряда других показателей процесса мочеобразования используют методы и формулы, осно­ванные на принципе очищения (иногда их называют «клиренсовые методы», от английского слова clearance — очищение). Для измере­ния величины клубочковой фильтрации используют физиологи­чески инертные вещества, не токсичные и не связывающиеся с белком в плазме крови, свободно проникающие через поры мем­браны клубочкового фильтра из просвета капилляров вместе с без­белковой частью плазмы. Следовательно, концентрация этих ве­ществ в клубочковой жидкости будет такой же, как в плазме кро­ви. Это вещества не должны реабсорбироваться и секретироваться в почечных канальцах, тем самым с мочой будет выделяться все количество данного вещества, поступившего в просвет нефрона с ультрафильтратом в клубочках. К веществам, используемым для измерения скорости клубочковой фильтрации, относятся полимер фруктозы инулин,  маннитол,  полиэтиленгликоль-400,  креатинин.

Рассмотрим принцип очищения на примере измерения объема клубочковой фильтрации с помощью инулина (рис. 12.5). Количество профильтровавшегося в клубочках инулина (In) равно произведению объема фильтрата (С,п) на концентрацию в нем инулина (она равна его концентрации в плазме крови, Р,п). Выде­лившееся за то же время с мочой количество инулина равно про­изведению объема экскретированной мочи (V) на концентрацию в ней инулина (UIn).

Так как инулин не реабсорбируется и не секретируется, то ко­личество профильтровавшегося инулина (С,п * Р/п), равно коли­честву выделившегося (V*  U,n), откуда:

Эта формула является основной для расчета скорости клубоч­ковой фильтрации. При использовании других веществ для измере­ния скорости клубочковой фильтрации инулин в формуле заменя­ют на анализируемое вещество и рассчитывают скорость клубочко­вой фильтрации данного вещества. Скорость фильтрации жидкости вычисляют в мл/мин; для сопоставления величины клубочковой фильтрации у людей различных массы тела и роста ее относят к стандартной поверхности тела человека (1,73 м ). В норме у муж­чин в обеих почках скорость клубочковой фильтрации на 1,73 м2 составляет около 125 мл/мин, у женщин — приблизительно 110 мл/мин.

Измеренная с помощью инулина величина фильтрации в клу­бочках, называемая также коэффициентом очищения от инулина (или инулиновым клиренсом), показывает, какой объем плазмы крови освобожден от инулина за это время. Для измерения очи­щения от инулина необходимо непрерывно вливать в вену раствор инулина, чтобы в течение всего исследования поддерживать по­стоянной его концентрацию в крови. Очевидно, что это весьма сложно и в клинике не всегда осуществимо, поэтому чаще исполь­зуют креатинин — естественный компонент плазмы, по очи­щению от которого можно было бы судить о скорости клубочковой фильтрации, хотя с его помощью скорость клубочковой фильтра­ции измеряется менее точно, чем при инфузии инулина. При не­которых физиологических и особенно патологических состояниях креатинин может реабсорбироваться и секретироваться, тем самым очищение от креатинина может не отражать истинной величины клубочковой фильтрации.

У здорового человека вода попадает в просвет нефрона в ре­зультате фильтрации в клубочках, реабсорбируется в канальцах, и вследствие этого концентрация инулина растет. Концентрацион­ный показатель инулина Uln/P,n указывает, во сколько раз умень­шается объем фильтрата при его прохождении по канальцам. Эта величина имеет важное значение для суждения об особенностях обработки любого вещества в канальцах, для ответа на вопрос о том, подвергается ли вещество реабсорбции или секретируется клетками канальцев. Если концентрационный показатель данного вещества X Ux/Px меньше, чем одновременно измеренная вели­чина и1п/Р,п, то это указывает на реабсорбцию вещества X в ка­нальцах, если Ux/Px больше, чем UIn/PIn, то это указывает на его секрецию. Отношение концентрационных показателей вещества X и инулина Ux/Px : UIn/PIn носит название экскретируемой фрак­ции (EF).