12.2.11. Принципы регуляции реабсорбции и секреции веществ в клетках почечных канальцев

К оглавлению
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 
153 154 155 156 157 158 159 160 161 162 163 

Одной из особенностей работы почек является их способность к изменению в широком диапазоне интенсивности транспорта различных веществ: воды, электролитов и неэлектролитов. Это яв­ляется непременным условием выполнения почкой ее основного назначения — стабилизации основных физических и химических показателей жидкостей внутренней среды. Широкий диапазон из­менения скорости реабсорбции каждого из профильтровавшихся в просвет канальца веществ, необходимых для организма, требует существования соответствующих механизмов регуляции функций клеток. Действие гормонов и медиаторов, влияющих на транспорт ионов и воды, определяется изменением функций ионных или вод­ных каналов, переносчиков, ионных насосов. Известно несколько вариантов биохимических механизмов, с помощью которых гормо­ны и медиаторы регулируют транспорт веществ клеткой нефрона. В одном случае происходит активирование генома и усиливается синтез специфических белков, ответственных за реализацию гор­монального эффекта, в другом случае изменение проницаемости и работы насосов происходит без непосредственного участия ге­нома.

Сравнение особенностей действия альдостерона и вазопрессина позволяет раскрыть сущность обоих вариантов регуляторных влияний.    Альдостерон    увеличивает   реабсорбцию   Na+   в клетках почечных канальцев. Из внеклеточной жидкости альдо­стерон проникает через базальную плазматическую мембрану в цитоплазму клетки, соединяется с рецептором, и образовавшийся комплекс поступает в ядро (рис. 12.11). В ядре стимулируется ДНК-зависимый синтез тРНК и активируется образование белков, необходимых для увеличения транспорта Na+. Альдостерон сти­мулирует синтез компонентов натриевого насоса (Na+, К+-АТФазы), ферментов цикла трикарбоновых кислот (Кребса) и натриевых каналов, по которым Na+ входит в клетку через апи­кальную мембрану из просвета канальца. В обычных, физиологи­ческих, условиях одним из факторов, ограничивающих реабсорб­цию Na+, является проницаемость для Na+ апикальной плазма­тической мембраны. Возрастание числа натриевых каналов или времени их открытого состояния увеличивает вход Na+ в клетку, повышает содержание Na+ в ее цитоплазме и стимулирует актив­ный перенос Na+ и клеточное дыхание.

Увеличение секреции К+ под влиянием альдостерона обуслов­лено возрастанием калиевой проницаемости апикальной мембраны и поступления К+ из клетки в просвет канальца. Усиление син­теза Na+, К+-АТФазы при действии альдостерона обеспечивает усиленное поступление К+ в клетку из внеклеточной жидкости и благоприятствует секреции К+.

Другой вариант механизма клеточного действия гормонов рас­смотрим на примере АДГ (вазопрессин). Он взаимодей­ствует со стороны внеклеточной жидкости с V2-рецептором, ло­кализованным в базальной плазматической мембране клеток ко­нечных  частей  дистального  сегмента  и   собирательных   трубок.

При участии G-белков происходит активация фермента аденилат-циклазы и из АТФ образуется 3',5'-АМФ (цАМФ), который сти­мулирует протеинкиназу А и встраивание водных каналов (аква-поринов) в апикальную мембрану. Это приводит к увеличению проницаемости для воды. В дальнейшем цАМФ разрушается фос-фодиэстеразой.